
Introduction git—theory git—practice

Version control
[Git]

Thomas De Graaff

August 23, 2016

Introduction git—theory git—practice

Introduction

Introduction git—theory git—practice

Version control What

The modern scientist’s lab notebook

Keep track of changes in a project as they occur
Document the changes
Archive the history in a way that allows to easily roll back
Tell differences with other versions (collaboration) and be able
to merge them

Introduction git—theory git—practice

Version control Why

Sanity: nothing “committed” is lost
just think about GTD principles (or decluttering conform
Kondo)

Archival: keep record on when what changed how
Collaboration: work simultaneously with colleagues, properly
merge and manage conflicts

Very neat video exemplifying the concept

https://www.youtube.com/watch?v=hNENiG7LAnc

Introduction git—theory git—practice

git—theory

Introduction git—theory git—practice

git

Today:

Set up a new project
Track changes as you work
Examine the change history
Compare different versions
Restore old versions of a file
Other tricks to better manage your git project

Not today (but you should check it out):

Collaboration with git
Conflicts in git

http://software-carpentry.org/v5/novice/git/02-collab.html
http://software-carpentry.org/v5/novice/git/03-conflict.html

Introduction git—theory git—practice

Why not, e.g., Dropbox?

Dropbox allows as well for

collaboration (if not only with yourself)
rolling back (see historical versions)

Main differences

Git is ‘better’ in noting the differences between versions
Git is able to merge differences between versions

between you and yourself
between you and others

Introduction git—theory git—practice

How does it work?

Figure 1: distributed version control systems

(Source: git-scm.com/book/)

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

Introduction git—theory git—practice

Taking snapshots

Figure 2: History of snapshots

(Source: git-scm.com/book/)

https://git-scm.com/book/en/v2/Getting-Started-Git-Basics

Introduction git—theory git—practice

The three states

Figure 3: Working directory, staging area and Git directory

(Source: git-scm.com/book/)

https://git-scm.com/book/en/v2/Getting-Started-Git-Basics

Introduction git—theory git—practice

Unnessarily complex?

Go to Github Desktop and

see your changes in your copy of ERSA-WooW
commit those changes with a message (done the Markdown
assignment!)
push the Sync thingie

Introduction git—theory git—practice

git—practice

Introduction git—theory git—practice

git - Requirements & Setup

Open terminal (Tools and options > Open in Git
Shell)
Assuming you have git installed:

$ git config --global user.name "Your Name"
$ git config --global user.email "your@email.org"

These are for attribution purposes only, it does not sign you up
for any service

Introduction git—theory git—practice

git - New project (repository)

Navigate to the folder where you want to create the new project
(not ERSA-WooW!) and create the directory, naming it the way you
prefer:

$ cd ..
$ mkdir GreatPaper
$ cd GreatPaper

Then start tracking:

$ git init

Introduction git—theory git—practice

git - New project (repository) (cnt.)

This will create a hidden folder called .git, which will story all the
history (although you will never access it directly).
A very common command you will use repeatedly is status:

$ git status

On branch master
#
Initial commit
#
nothing to commit (create/copy files and use "git add" to track)

Introduction git—theory git—practice

git - Work. . .

Start, for example, with one text file. You can create it from the
text editor of your preference, or you can create it using a command
line editor, but let us open a new file in Rstudio, titled:

nobelp_paper.md

And start working:

The world is flat.

Introduction git—theory git—practice

git - Work. . . (cnt.)

Take a break. Save and quit the file. And now check the status of
the git project:

$ git status

On branch master
#
Initial commit
#
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
nobelp_paper.md
nothing added to commit but untracked files present (use "git add" to track)

Introduction git—theory git—practice

git - . . . and track your work!

At this point, you want nobelp_paper.md to be tracked as you
work on it. This does not come automatically (like in Dropbox, for
example), but you need to explicitly add the file:

$ git add nobelp_paper.md

Now git knows it has to keep an eye on the file:

Introduction git—theory git—practice

git - . . . and track your work! (cnt.)

$ git status

On branch master
#
Initial commit
#
Changes to be committed:
(use "git rm --cached <file>..." to unstage)
#
new file: nobelp_paper.md
#

To record the file at a given stage, you need to “commit” the
changes. Include a (short) message describing the advancement:

$ git commit -m "Current state of knowledge about Earth"

Everything is properly recorded at this point.

Introduction git—theory git—practice

git - Why add and commit?

Figure 4: Local spaces

(Source: Software Carpentry)

http://software-carpentry.org/v5/novice/git/img/git-staging-area.png

Introduction git—theory git—practice

git - Why add and commit? (cnt.)

$ git status

On branch master
nothing to commit, working directory clean

It means you could keep working, not add, and, when you commit,
only the added version will be tracked. Very useful when a project
has many files!

Introduction git—theory git—practice

git - Work, track, work, track. . .

edit nobelp_paper.md

The world is NOT flat.

$ git status

On branch master
Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: nobelp_paper.md

no changes added to commit (use "git add" and/or "git commit -a")

Introduction git—theory git—practice

git - Work, track, work, track. . . (cnt.)

Since the file is under tracking already, you can add and commit in
a single shot:

$ git commit -am "Correcting view about Earth"

[master a643fa0] Correcting view about Earth
1 file changed, 1 insertion(+), 1 deletion(-)

Repeat this process as many times as snapshots you want to record
of your project.

Introduction git—theory git—practice

git - Examine log

$ git log

commit b4eeaafcff25d9e6464adbd5083c0202ccce7d90
Author: Thomas de Graaff <t.de.graaff@vu.nl>
Date: Mon Aug 15 12:09:39 2016 +0200

Correcting view about Earth

commit 7505fa61d973083d6d33791fc38ad57291c55a92
Author: Thomas de Graaff <t.de.graaff@vu.nl>
Date: Mon Aug 15 12:08:37 2016 +0200

Current state of knowledge about Earth

Introduction git—theory git—practice

git - Examine log (cnt.)

Or a more compressed view. . .

$ git log --pretty=oneline

b4eeaafcff25d9e6464adbd5083c0202ccce7d90 Correcting view about Earth
7505fa61d973083d6d33791fc38ad57291c55a92 Current state of knowledge about Earth

Or more detailed:

$ git log --pretty=format:"%h - %a, %ar : %s"

b4eeaaf - %a, 4 minutes ago : Correcting view about Earth
7505fa6 - %a, 5 minutes ago : Current state of knowledge about Earth

See more details about tweaking git log in this link.

http://www.git-scm.com/book/en/Git-Basics-Viewing-the-Commit-History

Introduction git—theory git—practice

git - Compare versions
Current version from last one tracked (HEAD):

nobelp_paper.md

The world is NOT flat at all.

$ git diff

diff --git a/nobelp_paper.md b/nobelp_paper.md
index 5a35641..3215244 100644
--- a/nobelp_paper.md
+++ b/nobelp_paper.md
@@ -1 +1 @@
-The world is NOT flat.
+The world is NOT flat at all.

Introduction git—theory git—practice

git - Compare versions (cnt.)

You can go back in time n revisions (HEAD~n):

$ git commit -am "Reaffirming myself about Earth's non-flatness"

$ git diff HEAD~2 nobelp_paper.md

diff --git a/nobelp_paper.md b/nobelp_paper.md
index 3fa4573..3215244 100644
--- a/nobelp_paper.md
+++ b/nobelp_paper.mdgit
@@ -1 +1 @@
-The world is flat.
+The world is NOT flat at all.

Introduction git—theory git—practice

git - Compare versions (ctd.)

Or compare with a specific revision (check log for that):

$ git diff 7505fa6 nobelp_paper.md

diff --git a/nobelp_paper.md b/nobelp_paper.md
index 3fa4573..3215244 100644
--- a/nobelp_paper.txt
+++ b/nobelp_paper.txt
@@ -1 +1 @@
-The world is flat.
+The world is NOT flat at all.

Introduction git—theory git—practice

git - Compare versions (cnt.)

Or compare two previous versions:

$ git diff 7505fa6 b4eeaaf nobelp_paper.md

diff --git a/nobelp_paper.md b/nobelp_paper.md
index 3fa4573..5a35641 100644
--- a/nobelp_paper.md
+++ b/nobelp_paper.md
@@ -1 +1 @@
-The world is flat.
+The world is NOT flat.

Introduction git—theory git—practice

git - Restore older version

Suppose we delete the file by accident:

$ rm nobelp_paper.md

Bringing the last version back is straightforward:

$ git checkout HEAD nobelp_paper.md

Also works if you decide to go back to a previous version of the file:

$ git checkout HEAD~2 nobelp_paper.md

Introduction git—theory git—practice

git - Restore older version (cnt.)

These modifications act as if you had edited the file:

$ git status

On branch master
Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

modified: nobelp_paper.md

So if you want to save the project at that stage again, commit:

$ git commit -am "Going back to original ideas"

Introduction git—theory git—practice

Checkout versus revert

Checkout allows you to go back in time and restore that version
with all subsequent changes lost!

Revert only undoes the changes of that specific commit
more elegant
but quickly conflicts need to be resolved

Introduction git—theory git—practice

git - Several files

git tracks “snapshots” of the project, rather than changes in
particular files.
Extending this process to several files in the project is
straightforward
The previous workflow favors keeping things organized in
different files. Although you can manage everything in one
master file, having the sections of a paper split into different
files makes going back and forth in time much easier and
flexible.

Introduction git—theory git—practice

Exercise

Create a new file with some text and include in the tracking.
Make a change in the file and commit it.
Bring the project to a state where nobelp_paper.md is in the
initial version and the new file is at the latest.

Introduction git—theory git—practice

Exercise (suggested) result
With RStudio

corollary.md

I am not really sure about Earth's flatness.

$ git add corollary.md
$ git commit -am "Adding corollary"

With RStudio

corollary.md

I am not really sure about Earth's flatness, it depends.

$ git commit -am "Introducing uncertainty to corollary"

Introduction git—theory git—practice

Exercise (suggested) result (cnt.)

$ git log --pretty=oneline nobelp_paper.md

25acad2069d72947e5aa2e21ddfe4509205ded88 Going back to original ideas
cfccca975f95ba6588ce07360f4507d5a796b20a Reaffirming myself about Earth's non-flatness
a643fa0ca03291793cb432d799defd0f496b5c9a Correcting view about Earth
6d119ff4a319650bfef06d279b000a56f5fe7759 Current state of knowledge about Eart

$ git checkout 6d119ff4a319650bfef06d279b000a56f5fe7759 nobelp_paper.md
$ git commit -am "Completing exercise"

Introduction git—theory git—practice

git - Get selective on a project

A project might have several files (we’ve seen how to deal with
that)
Some of those you might prefer to exclude (or not care to
include)
By default they will not be tracked
You can create a .gitignore file in the root folder listing files
to be explicitly excluded from tracking
With RStudio create/edit .gitignore file

$ git add .gitignore
$ git commit -m "Adding ignore file"

Introduction git—theory git—practice

git - Get selective on a project (cnt.)

*.aux

$ git status

On branch master
nothing to commit, working directory clean

	Introduction
	git—theory
	git—practice

